Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Plants (Basel) ; 12(15)2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37570988

RESUMO

The desiccation tolerance of plants relies on defense mechanisms that enable the protection of macromolecules, biological structures, and metabolism. Although the defense of leaf tissues exposed to solar irradiation is challenging, mechanisms that protect the viability of the roots, yet largely unexplored, are equally important for survival. Although the photosynthetic apparatus in leaves contributes to the generation of oxidative stress under drought stress, we hypothesized that oxidative stress and thus antioxidative defense is also predominant in the roots. Thus, we aimed for a comparative analysis of the protective mechanisms in leaves and roots during the desiccation of Haberlea rhodopensis. Consequently, a high content of non-enzymatic antioxidants and high activity of antioxidant enzymes together with the activation of specific isoenzymes were found in both leaves and roots during the final stages of desiccation of H. rhodopensis. Among others, catalase and glutathione reductase activity showed a similar tendency of changes in roots and leaves, whereas, unlike that in the leaves, superoxide dismutase activity was enhanced under severe but not under medium desiccation in roots. Nitric oxide accumulation in the root tips was found to be sensitive to water restriction but suppressed under severe desiccation. In addition to the antioxidative defense, desiccation induced an enhanced abundance of dehydrins, ELIPs, and sHSP 17.7 in leaves, but this was significantly better in roots. In contrast to leaf cells, starch remained in the cells of the central cylinder of desiccated roots. Taken together, protective compounds and antioxidative defense mechanisms are equally important in protecting the roots to survive desiccation. Since drought-induced damage to the root system fundamentally affects the survival of plants, a better understanding of root desiccation tolerance mechanisms is essential to compensate for the challenges of prolonged dry periods.

2.
Plants (Basel) ; 12(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37375865

RESUMO

Since water scarcity is one of the main risks for the future of agriculture, studying the ability of different wheat genotypes to tolerate a water deficit is fundamental. This study examined the responses of two hybrid wheat varieties (Gizda and Fermer) with different drought resistance to moderate (3 days) and severe (7 days) drought stress, as well as their post-stress recovery to understand their underlying defense strategies and adaptive mechanisms in more detail. To this end, the dehydration-induced alterations in the electrolyte leakage, photosynthetic pigment content, membrane fluidity, energy interaction between pigment-protein complexes, primary photosynthetic reactions, photosynthetic and stress-induced proteins, and antioxidant responses were analyzed in order to unravel the different physiological and biochemical strategies of both wheat varieties. The results demonstrated that Gizda plants are more tolerant to severe dehydration compared to Fermer, as evidenced by the lower decrease in leaf water and pigment content, lower inhibition of photosystem II (PSII) photochemistry and dissipation of thermal energy, as well as lower dehydrins' content. Some of defense mechanisms by which Gizda variety can tolerate drought stress involve the maintenance of decreased chlorophyll content in leaves, increased fluidity of the thylakoid membranes causing structural alterations in the photosynthetic apparatus, as well as dehydration-induced accumulation of early light-induced proteins (ELIPs), an increased capacity for PSI cyclic electron transport and enhanced antioxidant enzyme activity (SOD and APX), thus alleviating oxidative damage. Furthermore, the leaf content of total phenols, flavonoids, and lipid-soluble antioxidant metabolites was higher in Gizda than in Fermer.

3.
Plants (Basel) ; 12(9)2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37176950

RESUMO

Resurrection plants have the unique ability to restore normal physiological activity after desiccation to an air-dry state. In addition to their desiccation tolerance, some of them, such as Haberlea rhodopensis and Ramonda myconi, are also freezing-tolerant species, as they survive subzero temperatures during winter. Here, we compared the response of the photosynthetic apparatus of two other Gesneriaceae species, Ramonda serbica and Ramonda nathaliae, together with H. rhodopensis, to cold and freezing temperatures. The role of some protective proteins in freezing tolerance was also investigated. The water content of leaves was not affected during cold acclimation but exposure of plants to -10 °C induced dehydration of plants. Freezing stress strongly reduced the quantum yield of PSII photochemistry (Y(II)) and stomatal conductance (gs) on the abaxial leaf side. In addition, the decreased ratio of Fv/Fm suggested photoinhibition or sustained quenching. Freezing-induced desiccation resulted in the inhibition of PSII activity, which was accompanied by increased thermal energy dissipation. In addition, an increase of dehydrins and ELIPs was detected, but the protein pattern differed between species. During recovery, the protein abundance decreased and plants completely recovered their photosynthetic activity. Thus, our results showed that R. serbica, R. nathaliae, and H. rhodopensis survive freezing stress due to some resurrection-linked traits and confirmed their freezing tolerance.

4.
Plants (Basel) ; 12(2)2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36679114

RESUMO

Haberlea rhodopensis is a unique resurrection plant of high phenotypic plasticity, colonizing both shady habitats and sun-exposed rock clefts. H. rhodopensis also survives freezing winter temperatures in temperate climates. Although survival in conditions of desiccation and survival in conditions of frost share high morphological and physiological similarities, proteomic changes lying behind these mechanisms are hardly studied. Thus, we aimed to reveal ecotype-level and temperature-dependent variations in the protective mechanisms by applying both targeted and untargeted proteomic approaches. Drought-induced desiccation enhanced superoxide dismutase (SOD) activity, but FeSOD and Cu/ZnSOD-III were significantly better triggered in sun plants. Desiccation resulted in the accumulation of enzymes involved in carbohydrate/phenylpropanoid metabolism (enolase, triosephosphate isomerase, UDP-D-apiose/UDP-D-xylose synthase 2, 81E8-like cytochrome P450 monooxygenase) and protective proteins such as vicinal oxygen chelate metalloenzyme superfamily and early light-induced proteins, dehydrins, and small heat shock proteins, the latter two typically being found in the latest phases of dehydration and being more pronounced in sun plants. Although low temperature and drought stress-induced desiccation trigger similar responses, the natural variation of these responses in shade and sun plants calls for attention to the pre-conditioning/priming effects that have high importance both in the desiccation responses and successful stress recovery.

5.
Life (Basel) ; 13(1)2023 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-36676187

RESUMO

Haberlea rhodopensis belongs to the small group of angiosperms that can survive desiccation to air-dry state and quickly restore their metabolism upon rehydration. In the present study, we investigated the accumulation of sHSPs and the extent of non-photochemical quenching during the downregulation of photosynthesis in H. rhodopensis leaves under desiccation at optimum (23 °C) and high temperature (38 °C). Desiccation of plants at 38 °C caused a stronger reduction in photosynthetic activity and corresponding enhancement in thermal energy dissipation. The accumulation of sHSPs was investigated by Western blot. While no expression of sHPSs was detected in the unstressed control sample, exposure of well-hydrated plants to high temperature induced an accumulation of sHSPs. Only a faint signal was observed at 50% RWC when dehydration was applied at 23 °C. Several cross-reacting polypeptide bands in the range of 16.5-19 kDa were observed in plants desiccated at high temperature. Two-dimensional electrophoresis and immunoblotting revealed the presence of several sHSPs with close molecular masses and pIs in the range of 5-8.0 that differed for each stage of treatment. At the latest stages of desiccation, fourteen different sHSPs could be distinguished, indicating that sHSPs might play a crucial role in H. rhodopensis under dehydration at high temperatures.

6.
Int J Mol Sci ; 23(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36499377

RESUMO

Resurrection plants are able to deal with complete dehydration of their leaves and then recover normal metabolic activity after rehydration. Only a few resurrection species are exposed to freezing temperatures in their natural environments, making them interesting models to study the key metabolic adjustments of freezing tolerances. Here, we investigate the effect of cold and freezing temperatures on physiological and biochemical changes in the leaves of Haberlea rhodopensis under natural and controlled environmental conditions. Our data shows that leaf water content affects its thermodynamical properties during vitrification under low temperatures. The changes in membrane lipid composition, accumulation of sugars, and synthesis of stress-induced proteins were significantly activated during the adaptation of H. rhodopensis to both cold and freezing temperatures. In particular, the freezing tolerance of H. rhodopensis relies on a sucrose/hexoses ratio in favor of hexoses during cold acclimation, while there is a shift in favor of sucrose upon exposure to freezing temperatures, especially evident when leaf desiccation is relevant. This pattern was paralleled by an elevated ratio of unsaturated/saturated fatty acids and significant quantitative and compositional changes in stress-induced proteins, namely dehydrins and early light-induced proteins (ELIPs). Taken together, our data indicate that common responses of H. rhodopensis plants to low temperature and desiccation involve the accumulation of sugars and upregulation of dehydrins/ELIP protein expression. Further studies on the molecular mechanisms underlying freezing tolerance (genes and genetic regulatory mechanisms) may help breeders to improve the resistance of crop plants.


Assuntos
Craterostigma , Lamiales , Magnoliopsida , Magnoliopsida/metabolismo , Dessecação , Folhas de Planta/metabolismo , Aclimatação , Sacarose/metabolismo , Congelamento , Desidratação/metabolismo
7.
Plants (Basel) ; 11(17)2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-36079568

RESUMO

Haberlea rhodopensis is a unique desiccation-tolerant angiosperm that also survives winter frost. As, upon freezing temperatures, H. rhodopensis desiccates, the taxon is proposed to survive low temperature stress using its desiccation tolerance mechanisms. To reveal the validity of this hypothesis, we analyzed the structural alterations and organization of photosynthetic apparatus during the first hours of recovery after drought- and freezing-induced desiccation. The dynamics of the ultrastructure remodeling in the mesophyll cells and the restoration of the thylakoid membranes shared similarities independent of the reason for desiccation. Among the most obvious changes in thylakoid complexes, the proportion of the PSI-LHCII complex strongly increased around 70% relative water content (RWC), whereas the proportion of Lhc monomers decreased from the beginning of rehydration. We identified enhanced levels of cyt b6f complex proteins that contributed to the enhanced electron flow. The high abundance of proteins related to excitation energy dissipation, PsbS, Lhcb5, Lhcb6 and ELIPs, together with the increased content of dehydrins contributed to the preservation of cellular integrity. ELIP expression was maintained at high levels up to 9 h into recovery. Although the recovery processes from drought- and freezing-induced desiccation were found to be similar in progress and time scale, slight variations indicate that they are not identical.

8.
Plants (Basel) ; 11(2)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35050062

RESUMO

In this study, the contribution of nonenzymatic (ascorbate, glutathione) and enzymatic antioxidants (superoxide dismutase, catalase, glutathione reductase, glutathione S-transferase) in the first hours of recovery of the resurrection plant Haberlea rhodopensis from drought- and freezing-induced desiccation was assessed. The initial stage of recovery after desiccation is critical for plants, but less investigated. To better understand the alterations in the activity of antioxidant enzymes, their isoenzyme patterns were determined. Our results showed that ascorbate content remained high during the first 9 h of rehydration of desiccated plants and declined when the leaves' water content significantly increased. The glutathione content remained high at the first hour of rehydration and then strongly decreased. The changes in ascorbate and glutathione content during recovery from drought- and freezing-induced desiccation showed great similarity. At the beginning of rehydration (1-5 h), the activities of antioxidant enzymes were significantly increased or remained as in dry plants. During 7-24 h of rehydration, certain differences in the enzymatic responses between the two plant groups were registered. The maintenance of a high antioxidant activity and upregulation of individual enzyme isoforms indicated their essential role in protecting plants from oxidative damage during the onset of recovery.

9.
Physiol Mol Biol Plants ; 27(5): 1119-1133, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-34108826

RESUMO

Haberlea rhodopensis Friv. is unique with its ability to survive two extreme environmental stresses-desiccation to air-dry state and subzero temperatures. In contrast to desiccation tolerance, the mechanisms of freezing tolerance of resurrection plants are scarcely investigated. In the present study, the role of antioxidant defense in the acquisition of cold acclimation and freezing tolerance in this resurrection plant was investigated comparing the results of two sets of experiments-short term freezing stress after cold acclimation in controlled conditions and long term freezing stress as a part of seasonal temperature fluctuations in an outdoor ex situ experiment. Significant enhancement in flavonoids and anthocyanin content was observed only as a result of freezing-induced desiccation. The total amount of polyphenols increased upon cold acclimation and it was similar to the control in post freezing stress and freezing-induced desiccation. The main role of phenylethanoid glucoside, myconoside and hispidulin 8-C-(2-O-syringoyl-b-glucopyranoside) in cold acclimation and freezing tolerance was elucidated. The treatments under controlled conditions in a growth chamber showed enhancement in antioxidant enzymes activity upon cold acclimation but it declined after subsequent exposure to -10 °C. Although it varied under ex situ conditions, the activity of antioxidant enzymes was high, indicating their important role in overcoming oxidative stress under all treatments. In addition, the activity of specific isoenzymes was upregulated as compared to the control plants, which could be more useful for stress counteraction compared to changes in the total enzyme activity, due to the action of these isoforms in the specific cellular compartments. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s12298-021-00998-0.

10.
Physiol Plant ; 166(2): 585-595, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30043985

RESUMO

With their ability to survive complete desiccation, resurrection plants are a suitable model system for studying the mechanisms of drought tolerance. In the present study, we investigated desiccation-induced alterations in surface topography of thylakoids isolated from well-hydrated, moderately dehydrated, severely desiccated and rehydrated Haberlea rhodopensis plants by means of atomic force microscopy (AFM), electrokinetic and optical measurements. According to our knowledge, so far, there were no reports on the characterization of surface topography and polydispersity of thylakoid membranes from resurrection plants using AFM and dynamic light scattering. To study the physicochemical properties of thylakoids from well-hydrated H. rhodopensis plants, we used spinach thylakoids for comparison as a classical model from higher plants. The thylakoids from well-hydrated H. rhodopensis had a grainy surface, significantly different from the well-structured spinach thylakoids with distinct grana and lamella, they had twice smaller cross-sectional area and were 1.5 times less voluminous than that of spinach. Significant differences in their physicochemical properties were observed. The dehydration and subsequent rehydration of plants affected the size, shape, morphology, roughness and therefore the structure of the studied thylakoids. Drought resulted in significant enhancement of negative charges on the outer surface of thylakoid membranes which correlated with the increased roughness of thylakoid surface. This enhancement in surface charge density could be due to the partial unstacking of thylakoids exposing more negatively charged groups from protein complexes on the membrane surface that prevent from possible aggregation upon drought stress.


Assuntos
Craterostigma/metabolismo , Dessecação , Luz , Microscopia de Força Atômica/métodos , Tilacoides/metabolismo , Craterostigma/efeitos da radiação , Secas
11.
Plant Physiol Biochem ; 125: 185-192, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29459287

RESUMO

Haberlea rhodopensis is a chlorophyll-retaining resurrection plant, which can survive desiccation to air dry state under both low light and sunny environments. Maintaining the integrity of the membrane during dehydration of resurrection plants is extremely important. In the present study, the diffusion model was improved and used for a first time to evaluate the changes in ion leakage through different cellular compartments upon desiccation of H. rhodopensis and to clarify the reasons for significant increase of electrolyte leakage from dry leaves. The applied diffusion approach allowed us to distinguish the performance of plants subjected to dehydration and subsequent rehydration under different light intensities. Well-hydrated (control) shade plants had lower and slower electrolyte leakage compared to control sun plants as revealed by lower values of phase amplitudes, lower rate constants and ion concentration. In well-hydrated and moderately dehydrated plants (50% relative water content, RWC) ion efflux was mainly due to leakage from apoplast. The electrolyte leakage sharply increased in severely desiccated leaves (8% RWC) from both sun and shade plants mainly due to ion efflux from symplast. After 1 day of rehydration the electrolyte leakage was close to control values, indicating fast recovery of plants. We suggest that the enhanced leakage in air-dried leaves should not be considered as damage but rather as a survival mechanism based on a reversible modification in the structure of cell wall, plasma membrane and alterations in vacuolar system of the cells. However, further studies should be conducted to investigate the changes in cell wall/plasma membrane to support this conclusion.


Assuntos
Íons/metabolismo , Lamiales/metabolismo , Modelos Biológicos , Folhas de Planta/metabolismo , Desidratação/metabolismo
12.
Plant Physiol Biochem ; 114: 51-59, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28268193

RESUMO

Maintaining a strong antioxidant system is essential for preventing drought-induced oxidative stress. Thus, in the present study we investigated the role of some non-enzymic and enzymic antioxidants in desiccation tolerance of Haberlea rhodopensis. The effects of high light upon desiccation on antioxidant capacity was estimated by comparing the response of shade and sun plants. The significant enhancement of the antioxidant capacity at 8% RWC corresponded to an enormous increase in flavonoid content. The important role of ascorbate-glutathione cycle in overcoming oxidative stress during drying of H. rhodopensis was established. The antioxidant capacity increased upon dehydration of both shade and sun plants but some differences in non-enzymatic and enzymatic antioxidants were observed. Investigations on the role of polyphenols in desiccation tolerance are scarce. In the present study the polyphenol profiles (fingerprints) of the resurrection plant Haberlea rhodopensis, including all components of the complex are obtained for the first time. It was clarified that the polyphenol complex of H. rhodopensis includes only two types of glycosides - phenylethanoid glucosides and hispidulin 8-C-glucosides. Upon desiccation the polyphenol content increase and the main role of phenylethanoid glucosides in the protection of H. rhodopensis was revealed.


Assuntos
Antioxidantes/metabolismo , Secas , Magnoliopsida/fisiologia , Folhas de Planta/metabolismo , Ascorbato Peroxidases/metabolismo , Ácido Ascórbico/metabolismo , Bulgária , Desidratação , Glutationa/metabolismo , Glutationa Redutase/metabolismo , Glutationa Transferase/metabolismo , Luz , Estresse Oxidativo , Proteínas de Plantas/metabolismo , Polifenóis/metabolismo
13.
Mem Inst Oswaldo Cruz ; 111(7): 475-83, 2016 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-27384082

RESUMO

The presence and distribution of surface carbohydrates in the tissues of Galba truncatula snails uninfected or after infection with Fasciola hepatica as well as on the surface of the snail-pathogenic larval stages of the parasite were studied by lectin labelling assay. This is an attempt to find similarities that indicate possible mimicry, utilised by the parasite as an evasion strategy in this snail-trematode system. Different binding patterns were identified on head-foot-mantle, hepatopancreas, genital glands, renopericardial complex of the host as well as of the snail-pathogenic larval stages of F. hepatica. The infection with F. hepatica leads to changes of labelling with Glycine max in the head-mantle cells and Arachis hypogaea in the tubular epithelium of the hepatopancreas. The lectin binding on the other snail tissues is not changed by the development of the larvae. Our data clearly demonstrated the similarity in labelling of G. truncatula tissues and the surface of the snail-pathogenic larval stages of F. hepatica. The role of glycosylation of the contact surfaces of both organisms in relation to the host-parasite interactions is also discussed.


Assuntos
Carboidratos/fisiologia , Fasciola hepatica/metabolismo , Fasciolíase/metabolismo , Lectinas/metabolismo , Lymnaea/metabolismo , Animais , Arachis , Fasciola hepatica/parasitologia , Fasciolíase/parasitologia , Glicosilação , Larva/metabolismo , Larva/parasitologia , Lymnaea/parasitologia , Microscopia de Fluorescência , Oocistos/parasitologia , Valores de Referência , Coloração e Rotulagem , Triticum/parasitologia
14.
Mem. Inst. Oswaldo Cruz ; 111(7): 475-483, tab, graf
Artigo em Inglês | LILACS | ID: lil-787555

RESUMO

The presence and distribution of surface carbohydrates in the tissues of Galba truncatula snails uninfected or after infection with Fasciola hepatica as well as on the surface of the snail-pathogenic larval stages of the parasite were studied by lectin labelling assay. This is an attempt to find similarities that indicate possible mimicry, utilised by the parasite as an evasion strategy in this snail-trematode system. Different binding patterns were identified on head-foot-mantle, hepatopancreas, genital glands, renopericardial complex of the host as well as of the snail-pathogenic larval stages of F. hepatica. The infection with F. hepatica leads to changes of labelling with Glycine max in the head-mantle cells and Arachis hypogaea in the tubular epithelium of the hepatopancreas. The lectin binding on the other snail tissues is not changed by the development of the larvae. Our data clearly demonstrated the similarity in labelling of G. truncatula tissues and the surface of the snail-pathogenic larval stages of F. hepatica. The role of glycosylation of the contact surfaces of both organisms in relation to the host-parasite interactions is also discussed.


Assuntos
Animais , Carboidratos/fisiologia , Fasciola hepatica/metabolismo , Fasciolíase/metabolismo , Lectinas/metabolismo , Lymnaea/metabolismo , Arachis , Fasciola hepatica/parasitologia , Fasciolíase/parasitologia , Glicosilação , Larva/metabolismo , Larva/parasitologia , Lymnaea/parasitologia , Microscopia de Fluorescência , Oocistos/parasitologia , Valores de Referência , Coloração e Rotulagem , Triticum/parasitologia
15.
J Plant Physiol ; 171(17): 1591-600, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25151128

RESUMO

The resurrection plant, Haberlea rhodopensis can survive nearly total desiccation only in its usual low irradiation environment. However, populations with similar capacity to recover were discovered recently in several sunny habitats. To reveal what kind of morphological, structural and thylakoid-level alterations play a role in the acclimation of this low-light adapted species to high-light environment and how do they contribute to the desiccation tolerance mechanisms, the structure of the photosynthetic apparatus, the most sensitive component of the chlorophyll-retaining resurrection plants, was analyzed by transmission electron microscopy, steady state low-temperature fluorescence and two-dimensional Blue-Native/SDS PAGE under desiccation and rehydration. In contrast to the great differences in the morphology of plants, the ultrastructure and the organization of thylakoids were surprisingly similar in well-hydrated shade and sun populations. A high ratio of photosystem (PS)I binding light harvesting complex (LHC)II, important in low- and fluctuating light environment, was characteristic to both shade and sun plant, and the ratios of the main chlorophyll-protein complexes were also similar. The intensive protective mechanisms, such as shading by steep leaf angle and accumulation of protective substances, probably reduced the light intensity at the chloroplast level. The significantly increased ratio of monomer to oligomer antennae in well-hydrated sun plants may be connected with the temporary high light exposure of chloroplasts. During desiccation, LHCII was removed from PSI and part of PSII supercomplexes disassembled with some loss of PSII core and LHCII. The different reorganization of antennae, possibly connected with different quenching mechanisms, involved an increased amount of monomers in shade plants but unchanged proportion of oligomers in sun plants. Desiccation-induced responses were more pronounced in sun plants which also had a greater capacity to recover due to their stress-acclimated attitude.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Magnoliopsida/ultraestrutura , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/ultraestrutura , Proteínas de Ligação à Clorofila/metabolismo , Cloroplastos/efeitos da radiação , Cloroplastos/ultraestrutura , Escuridão , Dessecação , Luz , Magnoliopsida/fisiologia , Magnoliopsida/efeitos da radiação , Microscopia Eletrônica de Transmissão , Fotossíntese , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Proteômica , Espectrometria de Fluorescência , Tilacoides/efeitos da radiação , Água
16.
J Photochem Photobiol B ; 130: 217-25, 2014 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-24345600

RESUMO

Resurrection plants can survive dehydration to air-dry state, thus they are excellent models of understanding drought and dehydration tolerance mechanisms. Haberlea rhodopensis, a chlorophyll-retaining resurrection plant, can survive desiccation to relative water content below 10%. Leaves, detached from plants of sun and shade habitats, were moderately (∼50%) dehydrated in darkness. During desiccation, chlorophyll a fluorescence was detected by the recently innovated wireless Intelligent FluoroSensor (IFS) chlorophyll fluorometer, working with three different detectors: a pulse-amplitude-modulated (PAM) broadband channel and two channels to measure non-modulated red and far-red fluorescence. No change in area-based chlorophyll content of leaves was observed. The maximal quantum efficiency of photosystem II decreased gradually in both shade and sun leaves. Shade leaves could not increase antennae-based quenching, thus inactivated photosystem II took part in quenching of excess irradiation. Sun leaves seemed to be pre-adapted to quench excess light as they established an intensive increase in antennae-based non-photochemical quenching parallel to desiccation. The higher far-red to red antennae-based quenching may sign light-harvesting complex reorganization. Thus, compared to PAM, IFS chlorophyll fluorometer has additional benefits including (i) parallel estimation of changes in the Chl content and (ii) prediction of underlying processes of excitation energy quenching.


Assuntos
Clorofila/metabolismo , Desidratação/metabolismo , Fluorometria/métodos , Folhas de Planta/metabolismo , Traqueófitas , Clorofila A , Ecossistema , Fluorescência , Luz
17.
Acta Parasitol ; 57(1): 46-52, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22807013

RESUMO

The lectin binding properties of Fasciola hepatica miracidia were studied by a panel of fluorescein- and gold-conjugated lectins (ConA, LCA, WGA, LEA, SBA, HPA and UEA-I). The presence of mannose and/or glucose residues was demonstrated with ConA and LCA as weak diffuse fluorescence of the miracidial surface, which was more intense at the anterior part of the larva. The N-acetylglucosamine-binding lectins WGA and LEA reacted intensely with the whole miracidial surface. No labelling with N-acetylgalactosamine and/or galactose-specific (SBA and HPA) and fucose-specific UEA-I lectins was observed. The possibility that the specific recognition of the miracidial surface carbohydrates by lectins may initiate the process of transformation of the miracidia into sporocysts was examined in vitro in physiological saline for Galba truncatula. Incubation in the presence of ConA and WGA resulted in facilitation of the transformation process. Facilitation was absent in the presence of inhibitor sugars. Incubation in the presence of SBA or UEA-I had no effect. The results suggested a possible impact of carbohydrate-lectin interactions in transformation of miracidia of F. hepatica to sporocysts in vivo.


Assuntos
Fasciola hepatica/fisiologia , Lectinas/metabolismo , Animais , Fluoresceína , Ouro , Lectinas/química , Ligação Proteica/fisiologia , Coloração e Rotulagem
18.
Photosynth Res ; 108(1): 5-13, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21399978

RESUMO

Haberlea rhodopensis plants, growing under low irradiance in their natural habitat, were desiccated to air-dry state at a similar light intensity (about 30 µmol m(-2) s(-1)) under optimal (23/20°C, day/night) or high (38/30°C) temperature. Dehydration of plants at high temperature increased the rate of water loss threefold and had a more detrimental effect than either drought or high temperature alone. Water deficit decreased the photochemical activity of PSII and PSI and the rate of photosynthetic oxygen evolution, and these effects were stronger when desiccation was carried out at 38°C. Some reduction in the amount of the main PSI and PSII proteins was observed especially in severely desiccated Haberlea leaves. The results clearly showed that desiccation of the homoiochlorophyllous poikilohydric plant Haberlea rhodopensis at high temperature had more damaging effects than desiccation at optimal temperature and in addition recovery was slower. Increased thermal energy dissipation together with higher proline and carotenoid content in the course of desiccation at 38°C compared to desiccation at 23°C probably helped in overcoming the stress.


Assuntos
Dessecação , Temperatura Alta/efeitos adversos , Magnoliopsida/fisiologia , Carotenoides/análise , Carotenoides/metabolismo , Clorofila/análise , Clorofila/metabolismo , Malondialdeído/análise , Malondialdeído/metabolismo , Oxigênio/análise , Oxigênio/metabolismo , Complexo de Proteína do Fotossistema I/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Folhas de Planta/fisiologia , Prolina/análise , Prolina/metabolismo , Estresse Fisiológico , Tilacoides/metabolismo , Fatores de Tempo , Água/metabolismo , Equilíbrio Hidroeletrolítico
19.
PLoS One ; 5(10): e13343, 2010 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-20967224

RESUMO

BACKGROUND: Trichinella spiralis is an unusual parasitic intracellular nematode causing dedifferentiation of the host myofiber. Trichinella proteomic analyses have identified proteins that act at the interface between the parasite and the host and are probably important for the infection and pathogenesis. Many parasitic proteins, including a number of metalloproteins are unique for the nematodes and trichinellids and therefore present good targets for future therapeutic developments. Furthermore, detailed information on such proteins and their function in the nematode organism would provide better understanding of the parasite-host interactions. METHODOLOGY/PRINCIPAL FINDINGS: In this study we report the identification, biochemical characterization and localization of a novel poly-cysteine and histidine-tailed metalloprotein (Ts-PCHTP). The native Ts-PCHTP was purified from T. spiralis muscle larvae that were isolated from infected rats as a model system. The sequence analysis showed no homology with other proteins. Two unique poly-cysteine domains were found in the amino acid sequence of Ts-PCHTP. This protein is also the first reported natural histidine tailed protein. It was suggested that Ts-PCHTP has metal binding properties. Total Reflection X-ray Fluorescence (TXRF) assay revealed that it binds significant concentrations of iron, nickel and zinc at protein:metal ratio of about 1:2. Immunohistochemical analysis showed that the Ts-PCHTP is localized in the cuticle and in all tissues of the larvae, but that it is not excreted outside the parasite. CONCLUSIONS/SIGNIFICANCE: Our data suggest that Ts-PCHTP is the first described member of a novel nematode poly-cysteine protein family and its function could be metal storage and/or transport. Since this protein family is unique for parasites from Superfamily Trichinelloidea its potential applications in diagnostics and treatment could be exploited in future.


Assuntos
Cisteína/metabolismo , Histidina/metabolismo , Metaloproteínas/metabolismo , Trichinella spiralis/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Cromatografia em Gel , Dicroísmo Circular , Primers do DNA , Eletroforese em Gel de Poliacrilamida , Imunofluorescência , Glicosilação , Interações Hospedeiro-Parasita , Metaloproteínas/química , Microscopia Eletrônica de Transmissão , Dados de Sequência Molecular , Ratos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
20.
Ann Bot ; 105(1): 117-26, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19914917

RESUMO

BACKGROUND AND AIMS: Haberlea rhodopensis is a perennial, herbaceous, saxicolous, poikilohydric flowering plant that is able to survive desiccation to air-dried state under irradiance below 30 micromol m-2 s-1. However, desiccation at irradiance of 350 micromol m-2 s-1 induced irreversible changes in the photosynthetic apparatus, and mature leaves did not recover after rehydration. The aim here was to establish the causes and mechanisms of irreversible damage of the photosynthetic apparatus due to dehydration at high irradiance, and to elucidate the mechanisms determining recovery. METHODS: Changes in chloroplast structure, CO2 assimilation, chlorophyll fluorescence parameters, fluorescence imaging and the polypeptide patterns during desiccation of Haberlea under medium (100 micromol m-2 s-1; ML) irradiance were compared with those under low (30 micromol m-2 s-1; LL) irradiance. KEY RESULTS: Well-watered plants (control) at 100 micromol m-2 s-1 were not damaged. Plants desiccated at LL or ML had similar rates of water loss. Dehydration at ML decreased the quantum efficiency of photosystem II photochemistry, and particularly the CO2 assimilation rate, more rapidly than at LL. Dehydration induced accumulation of stress proteins in leaves under both LL and ML. Photosynthetic activity and polypeptide composition were completely restored in LL plants after 1 week of rehydration, but changes persisted under ML conditions. Electron microscopy of structural changes in the chloroplast showed that the thylakoid lumen is filled with an electron-dense substance (dense luminal substance, DLS), while the thylakoid membranes are lightly stained. Upon dehydration and rehydration the DLS thinned and disappeared, the time course largely depending on the illumination: whereas DLS persisted during desiccation and started to disappear during late recovery under LL, it disappeared from the onset of dehydration and later was completely lost under ML. CONCLUSIONS: Accumulation of DLS (possibly phenolics) in the thylakoid lumen is demonstrated and is proposed as a mechanism protecting the thylakoid membranes of H. rhodopensis during desiccation and recovery under LL. Disappearance of DLS during desiccation in ML could leave the thylakoid membranes without protection, allowing oxidative damage during dehydration and the initial rehydration, thus preventing recovery of photosynthesis.


Assuntos
Magnoliopsida/fisiologia , Estresse Fisiológico , Tilacoides/efeitos da radiação , Adaptação Fisiológica , Dióxido de Carbono/metabolismo , Cloroplastos/metabolismo , Cloroplastos/ultraestrutura , Dessecação , Fluorescência , Luz , Magnoliopsida/efeitos da radiação , Magnoliopsida/ultraestrutura , Fenóis/metabolismo , Fotossíntese , Folhas de Planta/fisiologia , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Transpiração Vegetal , Tilacoides/metabolismo , Tilacoides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...